\square
Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Regular Examinations March-2023 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES

(Electronics and Communication Engineering)
Time: 3 hours

> (Answer all Five Units $5 \times 12=60$ Marks)
> UNIT-I

1 a Define Electric Potential. Find the electric potential for a point charge is located
b A point charge $\mathrm{Q}=30 \mathrm{nC}$ is located at the origin in Cartesian co-ordinates. Find the electric flux density D at $(1,3,-4)$.

OR

2 a Deduce the electric field Intensity due to Surface charge.
b Determine the Electric flux density at a point P due to infinite sheet of Charge
using Gauss law.

UNIT-II

3 a Explain Biot-Savart's Law.
b A Positive Y-axis (Semi Infinite Line with respect to the Origin) Carries a Filamentary Current of 2 A in the -ay Direction. Assume it is part of a large circuit. Find \mathbf{H} at (i) $\mathrm{A}(2,3,0)$. (ii) $\mathrm{B}(3,12,-4)$.

OR

4 Explain any two applications of Ampere's Circuit law.

UNIT-III

5 a In free space, $\mathbf{E}=20 \cos (\omega t-50 \mathrm{x})$ ay V/m. Calculate $\mathbf{J d}, \mathbf{H}$.
b Why ampere's Law is In-consistent.
OR
6 a Determine the Transformer EMF for the time varying fields.
b Explain the motional EMF and derive the expression for the maxwell equation.

UNIT-IV

7 Discuss about power and Poynting vector.

OR

8 a Evaluate the wave equation in lossy dielectric medium for sinusoidal time variations.
b Derive the expression for intrinsic impendence and propagation constant in a good conductor.

UNIT-V

9 A 30 m long lossless transmission line with $\mathrm{Z} 0=50 \Omega$ operating at 2 MHz is terminated with a load $Z L=60+j 40 \Omega$. If $u=0.6 \mathrm{C}$ on the line, find the reflection coefficient, the standing wave ratio S and the input impedance.
(i) without using smith chart (ii) Using smith chart

OR

10 Deduce the equation for voltage and current at any point in a transmission line.

Max. Marks: 60

CO2 L3 8M CO2 L2 4 M
CO3 L4 6M CO2 L3 6M
CO1 L2 6M
CO2 L3 6M

CO3 L2 12M
CO4 L3 8M

CO2 L4 4M
CO4 L3 6M
CO4 L3 6M

CO5 L2 12M
CO5 L4 6M
CO5 L3 6M

CO6 L3 12M

CO6 L4 12M
*** END ***

$$
\begin{aligned}
& 1 \\
& \underset{\infty}{1}
\end{aligned}
$$

