Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech III Year I Semester Regular Examinations March-2023 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES

	(Electronics and Communication Engineering)			
	Time: 3 hours	Max. M	arks: 6	50
	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I			
1	a Define Electric Potential. Find the electric potential for a point charge is located at origin and Write Maxwell's second equation for electrostatic field.	CO2	L3	8M
	b A point charge Q= 30 nC is located at the origin in Cartesian co-ordinates. Find the electric flux density D at (1,3,-4).	CO2	L2	4M
	OR			
2	a Deduce the electric field Intensity due to Surface charge.	CO ₃	L4	6M
	b Determine the Electric flux density at a point P due to infinite sheet of Charge using Gauss law.	CO2	L3	6M
	UNIT-II			
3	a Explain Biot-Savart's Law.	CO ₁	L2	6M
	b A Positive Y-axis (Semi Infinite Line with respect to the Origin) Carries a	CO ₂	L3	6 M
	Filamentary Current of 2 A in the -ay Direction. Assume it is part of a large circuit. Find H at (i) A(2,3,0). (ii) B(3,12,-4).			
	OR			
4	Explain any two applications of Ampere's Circuit law.	CO ₃	L2	12M
	UNIT-III			
5	a In free space, $E=20 \cos(\omega t-50x)$ ay V/m. Calculate Jd , H .	CO ₄	L3	8M
	b Why ampere's Law is In-consistent.	CO ₂	L4	4M
	OR			
6	a Determine the Transformer EMF for the time varying fields.	CO ₄	L3	6M
	b Explain the motional EMF and derive the expression for the maxwell equation.	CO ₄	L3	6M
	UNIT-IV			
7	Discuss about power and Poynting vector.	CO5	L2	12M
	OR			
8	a Evaluate the wave equation in lossy dielectric medium for sinusoidal time	CO5	L4	6M
	variations.			
	b Derive the expression for intrinsic impendence and propagation constant in a	CO ₅	L3	6M
	good conductor.			
	UNIT-V			
9	A 30 m long lossless transmission line with $Z0 = 50\Omega$ operating at 2 MHz is	CO ₆	L3	12M
	terminated with a load $ZL = 60 + j 40\Omega$. If $u = 0.6$ C on the line, find the reflection			
	coefficient, the standing wave ratio S and the input impedance.			
	(i) without using smith chart (ii) Using smith chart			
	OR			
10	Deduce the equation for voltage and current at any point in a transmission line.	CO6	L4	12M